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A double scale technique is used to determine the asymptotic behaviour of a 
rolled-up vortex sheet. The technique relies on a process of averaging out the 
saw-tooth-like behaviour of the flow variables, which generates a continuous 
solution having the structure of a vortex filament. The fine-scale behaviour of 
the flow is described and includes concentrated vorticity on the sheet. Applica- 
tion to the conical vortex sheet allows the solution of Mangler & Weber (1967) 
to be rederived. A further application, to Kaden’s problem, is worked out and 
the results are in complete agreement with Moore’s asymptotic formulae for the 
shape of the spiral. 

1. Introduction 
We start from the simple idea that a vortex sheet is an infinitely narrow 

region carrying infinitevorticity, a concept which may be given a precise meaning 
with the aid of distribution theory; the vorticity of the sheet at a given point is 
then a Dirac delta function times n A [u], where n is the unit normal to the 
sheet and [u] the discontinuity in the velocity across it. Accordingly we speak 
of n A [u] as the vorticity of the sheet. If many vortex sheets each of which 
carries a weak vorticity are embedded within a region of flow, then, in some 
sense, even if the flow between the sheets is irrotational it may, in an approxi- 
mate manner, be regarded as one without any sheet and with continuously 
distributed vorticity. This approach may be useful in some circumstances even 
if it  is not physically meaningful. But there are circumstances where this scheme 
of many sheets with weak vorticity actually occurs in the flow under investiga- 
tion. This happens to be the case for the core of a rolled-up vortex sheet and it 
would be highly desirable to devise a mathematical technique which would allow 
the actual flow with a vortex sheet to be modelled by an equivalent (to some 
approximation) one with continuously distributed vorticity. This is particularly 
clear when one deals with numerical computations of rolled-up vortex sheets 
like those in Chorin & Bernard (1973) or Noore (1974) for the rolling-up of a 
trailing vortex sheet or that in Smith (1968) for the leading-edge vortex sheet of a 
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flat delta wing at incidence in incompressible flow, which was described 
earlier by Roy (1957) and was replaced by concentrated vorticity in the pre- 
liminary attempt of Brown & Michael (1954) and in Rehbach (1975) for more 
complex leading-edge configurations. 

Kaden (1931) has obtained an asymptotic representation of the core of the 
semi-infinite sheet emerging from the potential flow around a flat edge which is 
instantaneously removed, and this provides a model for the rolling-up of a trailing 
vortex sheet as described in Moore & Saffman (1973). Although it was most 
illuminating and essentially correct, the work of Kaden did not have the mathe- 
matical status which is now common in many rational, if not mathematically 
rigorous, asymptotic expansion theories. Recently Moore (1  975) succeeded in 
achieving this goal for the Kaden type of result and found two terms in the 
asymptotic expansion of the equation of the spiral, which revealed a quite 
interesting effect, namely a departure from circular symmetry in the angle of 
pitch of the spiral in the first correction to Kaden’s leading term Occytr-3. 
Apart from the physically meaningless improvement of raising it to the status 
of a mathematically demonstrable theorem, there is one point in Moore’s work 
which leaves room for a physically meaningful improvement. His theory is in 
fact devoted to obtaining an asymptotic representation of the equation of the 
spiral and some work has to be done in order to convert this into an asymptotic 
representation for the flow itself. As an application of the general theory to be 
developed in this paper we rederive Moore’s expansion, adding a few further 
terms, and obtain, without any more calculation, the asymptotic representation 
of the velocity field. Mangler & Weber (1967) devised an inviscid theory which 
gives an asymptotic representation of the flow in the core of a rolled-up vortex 
sheet which is applicable to the delta leading-edge core and to Kaden’s core. 
To be specific, let us consider the first application. The sheet is assumed to be 
conical and is found to spiral in a nearly circular way. For convenience we use 
conical similarity and restrict ourselves to what happens on the unit sphere. 
The equation of the spiral is derived to leading order in the distance to the focus 
of the spiral, while an asymptotic representation of the flow variables is given 
as the first two terms of what looks like an asymptotic expansion. The basic 
parameter of the expansion is, again, the distance (on the unit sphere with our 
convention) to the focus of the spiral. In  fact, it  is a co-ordinate-like expansion. 
The first term of this expansion is identical to the corresponding one in the 
solution for axially symmetric, rotational, inviscid, incompressible conical flow 
derived by Hall (1961). This means that, according to what was said above, the 
vorticity, which is concentrated on the sheet, with the form of a Dirac delta 
function in the exact solution, has been smeared out and appears as distributed 
vorticity. With the second term of the expansion we recover the discontinuous 
structure of the flow, and the two terms together provide an irrotational solution 
between the turns of the rolled sheet. The distributed vorticities associated 
with the first and second terms respectively cancel each other out. The reason 
why this is possible is that the second term has a built-in length scale in the 
direction normal to the sheet which is an order of magnitude lower than that 
of the leading term, so that vorticities of the two terms are of the same order. 
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Through inspection of the formulae derived by Mangler & Weber, it  is apparent 
that their solution has a double scale structure. Although Mangler & Weber 
did not take advantage of this, it  occurred to the present authors that Mangler 
& Weber’s solution could best be derived by applying the technique of multiple 
scaling. It turned out that this view was correct and that, with a small amount 
of algebra, the expansion could be carried one step further. In  fact, this higher- 
order correction to Mangler & Weber’s solution is not the whole story. The point 
is that the correction which is derived in such a way does not exhibit the departure 
from circular symmetry of the spiral which should occur in the model if it is to 
be of some value for the numerica1 computation of the delta-wing problem. 
Indeed, the correction we give is only part of the full correction and is given for 
the purpose of illustration. As with any local asymptotic expansion, this one 
contains arbitrary constants or functions which can be computed only by 
matching with another, non-local, asymptotic expansion. We observe that at 
least two small parameters may be built into the problem of a rolled-up sheet: 
one is the slenderness parameter, which for the leading-edge conical sheet is 
the distance to the focus of the spiral, while the other is the reciprocal of the 
number of turns or the distance between turns, which we may call the closeness 
parameter. For the conical leading-edge vortex sheet it turns out that the 
second small parameter is of the order of the square of the first if we adopt the 
useful convention that logarithms are of order one. It is through the slenderness 
parameter that the core expansion is influenced by the exterior solution and 
thus has to take into account the departure from circular symmetry. For the 
leading-edge core, the very fact that closeness is slenderness squared means that 
the departure from circular symmetry should occur a t  the order after the one 
computed by Mangler & Weber. It was to satisfy our curiosity that the part of 
this correction corresponding to closeness has been computed, and we have 
included it in the paper. Thanks to the insistence of one referee, who was not 
satisfied by our argument that’ ellipticity of the spiral is related to the slenderness 
expansion and that i t  is worth while to have a separate process in order to deal 
with the closeness expansion, we have worked out Kaden’s problem, which 
allows a clear understanding of the roles of the two expansions. 

In  the next two sections, we explain the main idea on which the expansion 
with respect to closeness relies, without any slenderness assumption, and delay 
to $ 3  4 and 5 application of the technique to the leading-edge core and to Kaden’s 
rolled-up vortex sheet respectively. 

2. The double scale structure 
We consider time-dependent, incompressible, irrotational flow with very 

many, closely spaced, vortex sheets, each carrying a weak vorticity. We work 
throughout with non-dimensional quantities and use t for time, x for vector 
position, u for velocity and p for pressure, the density being unity. We introduce 
a function X ( t ,  x) such that the overall equation of the many sheets is 

x(t,x) = ( 2 k +  l ) T ,  k = ... -2 ,  - l , O ,  1,2, ..., 
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pxlatl, lVXl % 1, (2) 

where V stands for the gradient operator. A word of explanation about (1) may 
be useful. The whole sheet is in fact given by x = constant, but it happens that, 
when the sheet is rolled-up around a line, the function X ( t ,  x) is multiple valued 
and this explains why the constant takes several values. In  local cylindrical 
co-ordinates ( r ,  $, cr) the function x has the structure x = $ + P(t, r ,  cr) and the 
sequence of values on the right-hand side of (1)  is related to the multiple valued- 
ness of $. Now we come back to the problem and state the set of basic equations 
(not independent) that we use throughout: 

v .u  = 0, (3) 

au/at+(u.v)u+vp = 0, (4) 

v A U = o ,  ( 5 )  

ax/at + u . Vx = 0 on both sides of each sheet, (6) 

[p] = Vx. [u] = 0 across each sheet, (7) 

where If] stands for the discontinuity in f across the sheet counted from lower 
to higher values of 2. 

In  order to incorporate the closeness assumption in the model, we use the 
very popular technique of multiple scaling and averaging. More specifically, 
we set 

and try to build up a solution with u* and p* functions oft, x and x, considered 
as independent variables. Substituting (8) into (3)-( 7) we get 

u(t, 4 = u*(t, x; X ( t ,  x)) p(t, x) = p*(t, x; x(t, XI) (8 )  

vx.al.l*/ax+v.u* = 0, (9) 

(10) 
au* ap* al* (2 +u* . vx) +ax vx +- + (u* . V) u* + Vp" = 0, 

at 

v X A 8 U * / a X + v A U *  = 0, (11) 

ax/at+u*.vx = 0, = (2k+11n, (1.2) 

@*] = Vx. [u*] = 0 across x = ( 2 k +  1)n. (13) 

It is now clear how the closeness assumption can be used to obtain an approxi- 
mation. Before entering into the formalities, we observe that, as in any multiple- 
scale technique, we shall encounter at each step a set of conditions that are to be 
enforced in order to eliminate secular terms. We may achieve this once and for 
all by averaging. Let us stress the fact that the way in which u* and p* depend 
on x, on account of assumption (Z), which states that varies rapidly across the 
space between two consecutive sheets, takes care of the main variation of U* 

and p* from one sheet to the next. Now, on x = (2k  + 1) n, u* but not p* suffers 
a discontinuity. For one type of solution that we consider here, each discontinuity 
cancels out the corresponding variation between the two consecutive sheets at 
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least to leading order. This means that u* has a saw-tooth-like appearance, as a 
function of x, and the way to enforce the absence of secular terms is to demand 
that U* andp* be periodic as functions of x. Then for any scalar or vector funct,ion 
of x,  we may conveniently set 

f*(x) =F+.f*(x), 

For later convenience we refer to the process of going from any f * t o F  as the 
averaging process and c a l l p  the fluctuation in f. 

Now we apply the averaging process to (9)-( 1 l), taking due account of (12) 
and (13). From periodicity of u* and p* we get the set of averaged equations 

- 
- v . u *  = 0, (15) 

- + (u*. V )  u* + v p  = - (V .u*) u*. (16) at 
au* 

The way to obtain (16) is obvious when due account is taken of (7). Concerning 
(16) we observe that, thanks to (7)  again, the term (ap*/ax) V x  averages to zero, 
while when averaging (ax/at + u* . Vx) &*/ax we obtain, through one integration 
by parts, two terms, one of which is zero from (6) while the other is the average 
of [(au*/ax) .Vx]u*, whichis precisely (V.u*)u*, from (9). 

We observe that these equations have some anaIogy with the usual equations 
of incompressible flow, the main difference being that (u* . V )  U* i s  not (u* . V) u*, 
at least before any approximation. The averaging of (11) requires some care 
because this is not an equation in conservation form, but fromu* l;~!!,, = - 2n[u*] 
we get the following averaged form of the equation of cancellation of vorticity: 

- -  

2 n ~  A u i =  - vx A [u*], giving VX. (V A ui) = 0. (17) 

Now, it is obvious that if we could, through some approximation, replace 
(u* . 0) u* in (16) by (u+ . V)u* we should have achieved the goal that we men- 
tioned a t  the beginning of this paper. Equation (17) is quite illuminating in this 
respect. Let us call (p* ,  u*) the model flow; we see that the vorticity of this model 
flow is exactly the result of continuously redistributing the Dirac-type vorticity 
which is concentrated on the sheet for the exact flow. We see also that the vorticity 
in the model flow is of order one as the result of the high value of lVxl and the 
weak vorticity of the sheet, namely n A [u*], and we refer to our comment about 
the cancellation of vorticity for the first two terms of Mangler & Weber's solution. 

-- 

3. Formalities 
We intend to take advantage of (2) in order to solve (9)-(13), approximately, 

through an expansion process. We assume that, when applied to the flow variables 
a/at and V are of order s-1, where s is the so-called slenderness parameter. In the 
application to the leading-edge core s is found to be O(8l log 01) if 8 is the angular 
distance to the focus of the spiral (on the unit sphere). We assume further that 

7 F L M  79 
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laxfat1 and 10x1 are or order C - ~ S - ~ ,  where c is the closeness parameter, which is 
supposed to be small. Let us consider (11); we rewrite it as 

vx A au*/ax + CS v A U* = 0, (114  

and then expand according to 

(18) 1 u* = u * ~ ~ ~ + c u * ~ ~ ~ + c ~ u * ~ ~ ~ +  ... = u;+u:+u;+ ..., 
p* = p*(O'+ cp*(lf + c2p*(2) + . . . = p; +p,T +p;  + . . ., 
x = y o ' +  c x (1) + C Z X ' 2 ' + . . .  = xo+x1+x2+ .... 

Instead of introducing the small parameter c into the equations we leave them 
as they stand and solve them iteratively in the obvious manner. A s  a matter of 
fact, in the application, the expansion with respect to c is a co-ordinate expansion 
and its structure is obvious from the results. 

Substituting (1 8) into (9)-( 13) we find easily 
- - 

au$/ax = ap;/ax = 0, giving u; = U; p; = p;, (19) 

and from (15) and (16) we see that, to the leading approximation, the model 
flow:satisfies the continuity and Euler equations: 

I v.u; = 0, 
a5*/at + (u; . 0) u; + vp; = 0. 

On the other hand,Lfrom (12) we find 

axo/at +5* . vxo = 0. (21) 

vxo. i q a x  = 0, (22) 

(23) 

(24) 

P,T = p:,  (25) 

Yl(x) = x for 1x1 < T ,  Yl(x) periodic with period 2n. (26) 

Proceeding to the second approximation, we find 

vx0 A au:/ax = - v A ug, 
from which 

U: =$+vxoA"~Yl(x) ,  0; = VAU;, 
I Y Y o 1 2  

- 

where Yl(x) is defined by 

We must stress that (22) and (23) are soluble with respect to au:/ax if and only if 

vxo.w; = 0. 

0.u; = 0, 
- From (15) and (16) we obtain 

- 
au:/at + (u; . V)? + (3. V) uo* + v g  = 0, 

while from (12) we get 
ax,/at + u; . vxl + 3. vxo = 0. 
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We now examine the third approximation in order to exhibit the dynamical 
condition on the sheet. From (9)-(11) we find, taking (28)  and (29) into account 

and from this, provided that 

holds, we get 
vxl.w$+VXo.(VA$) = 0 

where Y2(x) = &(x2-+n2) for 1x1 < n, Y2(x) 2~-periodic. (34) 

We observe that (31 c) is soluble for apzlax if and only if 

We may interpret this relation as follows. It is known that, along any vortex 
sheet with unit normal n, the following dynamical condition holds: 

n A {q + ([u]. v)ur,&] = 0, VX = IVXln, (36) 

(37) I D,,pt = apt  + U, . v; 
u, = +(u+ + u-), [u] = u+ - u-, 

with 

where U+ and U- are the values of u on either side of the sheet. The first approxi- 
mation to (36) here reads 

Now, our problem is to decide whether (35) is an extra condition to be enforced 
on u,* and xo or whether it holds automatically. A moment's reflexion suggests 
that it should hold in some sense. In  fact (36) is merely the result of subtracting 
the projections of the Euler equations on the two sides of the sheet onto the plane 
tangential to the sheet; on the other hand, everywhere between the sheets we 

7-2 
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have used irrotationality, conservation of mass and the component of the Euler 
equation normal to the sheet and this implies that the full Euler equation holds 
between the sheets. In  order to render our argument a little more precise we 
take advantage of irrotationality to conclude that, for the exact solution, one has 

LU1 = vT r, (39) 

where I? is the jump in velocity potential across the sheet and V, the gradient 
operator along it. The first approximation to (39) leads to 

- 2nn0 A o$/lVx0l = V, r0, (40) 

and to be sure that there exists a r0 such that (40) holds we have to check that 

for any closed contour -Eo, drawn on the sheet. As Iv~~l-1 is proportional to the 
(small) distance between two consecutive turns of the sheet, (41) is the flux of 
w$ across the curved surface of a small cylinder with generators normal to the 
sheet and with the area bounded by Po as its cross-section. Now, from the fact 
that o$ is solenoidal, we see that (41) will hold if the flux of w$ across the 
ends of the cylinder is zero, but this is a consequence of (27). We conclude 
that (27) guarantees that (40) holds. Now, in order to check that (38) holds, 
we need check only that 

no A {(a/at + U$ . V) V, r0 + (V, ro . V) u$] = 0, (42) 
or? 

n o A ( V T ( 2 + u : . V  - ( ~ U , * ) . ~ , r , + ( ( v , r , ) . ~ ) u $  = o ,  (43) I 
and from (27) this holds if 

ar,/at +u; . v, ro = 0. (44) 

We said previously that (38) is satisfied automatically in some sense and we have 
just proved that this is true provided that (44) holds. Of course (44) is a tvell- 
known condition in the theory of vortex sheets and it is not a t  all surprising 
that we recover it. For the conical vortex sheet that we consider in the next 
section it is found that even (44) is satisfied automatically. 

4. Application to the core of a leading-edge vortex 
4.1. General setting 

Let us apply the previous analysis to the problem of a conical rolled-up vortex 
sheet. We use spherical co-ordinates (T,  8, $), the unit vectors being e,, ee and 
e+, and set 

for the velocity. We look for a solution involving a conical vortex sheet highly 

7 The simplest way to justify the step from (42) to (43) is to continue r0 outside the sheet. 
On the other hand, in (VU:) . VT r0 the indices of u: are contrmted with those o ~ V T .  

u = we, + uee + we4 (45) 
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rolled-up around 8 = 0. The first step is to obtain a soIut,ion of the inviscid 
incompressible flow equations with conical symmetry, i.e. a solution of 

(46a) 
au; au: ap: 
ae aq5 ae u,* sin 8 - + v$ - +- + u,* w$ sin 8 - vz2 cos 8 = 0, 

a(ut sin 8) av$ +- + 2w,* sin 8 = 0. 
a0 a+ 

For our problem we shall use the solution of (46) for 8 small and we expect that 
the leading approximation will be independent of q5. It is a very easy matter to 
obtain a solution of (46) independent of q5 and this has been worked out by Hall 
(1961). We characterize this particular solution by a further subscript zero. The 
following set of equations may easily be obtained: 

= 0, giving C, u$, + v$$ sin 8 = 0, 

- dW& -u$,+- CO = 0, 
ae sin 8 

u$, cos 8 + w,*, sin 8 
sin e = 0, - du$o 

d@ +w,*o + 

where C, is an arbitrary constant. We integrate these equations to 

u,*~ = - C,{( 1 - cos 0) cot 6 + ( - log tan 48 + E,) sin O}, 

v,*, = C,{( - log tan 48 + E,) + (I - cos 8) cos 8 (cosec 8)2}3, 

w:, = C,{( - log tan 48 + E,) cos 8 - (1  - cos S)} 

(E ,  = constant). For small 8 this leads to 

u,*, = -C08A+0(83( logo[), 

w;; = Q,(A - 4) + o ( q  log 01 ), 

v:J = CoR~+0(821 lOgOI), 

with A = - i o g ~ e + E , + ~ ,  

and p:, is readily found tolbe 

p:o = - * ~ ’ g ~ 2 + 0 ( 0 2 1  ioge12). 

Having obtained a basic solution of (46) with axial symmetry, we can try to 
get more general solutions by perturbing it as follows: 

u:(e, 9) = u&(8) + C Re + ..., 
n> 1 

(54) 
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with analogous formulae for vg , w: and p;. Substituting (54) and the analogous 
formulae into (46) we get the ordinary differential equation 

for 

where the superscript T indicates the transpose of the row vector. It may be 
readily checked that the matrix A is not singular in the vicinity of 8 = 0 except 
at 8 = 0 itself, which is an irreguar singularity in the neighbourhood of which 
the structure of the solutions of (55) may be obtained through straightforward 
but tedious reductions. We shall not pursue this here. 

4.2. Purther comments on the Mangler & Weber solution 
From now on, we restrict our attention to building up a solution exhibiting a 
rolled-up sheet using ut0, wz0,  w$o and pt0.  The &st step is to find xo, which we 
write as xou in order to emphasize that it is based on the approximationof rota- 
tional symmetry for the model solution (u:, vt, w:, p;). We find 

where 

(58) I eoo(t9) = ~ ," , (~ ) s in8 /v~~(O)  = 8%00(8)+0(82~loge~),  

and where X stands for an arbitrary function. We now have to consider the 
vorticity ato and prove that we can find a scalar function roo(r, 8), defined on 
the sheet, such that (40) and (44) hold. We set 

and compute that 

Eoo(8)  = -A* 

4 0  = G o  e, + G o  e, + $0 e$ (59) 

I <Z0 = - ~ ~ ~ r - - 1 ,  

But 
Vxoo = r-lX'{ - €6' ee + (sin 8)-l e+>, 

and (27) is readily found to be equivalent to 

v$: + u&(u& - dw&/d8) = 0, ( 6 2 )  

which holds for our model solution. From (40) we find that roo must be such thatf- 

from which roo = ( - 2n/X')  rvz0 sin 8, (64) 

t We call the reader's attention to the fact that when V, Too is computed, X '  is constant. 



T h e  structure of rolled-up vortex sheets 103 

provided that 
A 

1 v:, 1 dw& (Zo+&) vgosinO = -+- -- sin0 eo0 ( d o  ~ g o )  9 

which may readily be checked to be true. 
Summing up, we have found that, provided that rlVXool 9 1 i.e. provided that 

X’{eit + (sin 6’)-2}& I ,  (66)  

(67)  

(68)  

we may build up a solution exhibiting a rolled-up sheet: 
- 

U = (Ute + . . . ) + (u& + . . . ) + ( oxoo A a:,// VXool + . . . ) y,(x) + . . . , 
p = (p&+ . . . )+pT,+ .... 

- 

The closeness assumption may be satisfied in three ways: (i) 0 < 1, (ii) E, 9 1 
or (iii) lX’l 9 1.  The first two situations lead to a highly rolled vortex sheet 
while the third corresponds not to one sheet with closely spaced turns but to 
many sheets closely spaced from each other. It is not clear to what physical 
situation (iii) is appropriate. When (i) holds, slenderness and closeness are 
intimately related, while under (ii) they play separate roles. Mangler & Weber’s 
solution is obtained from (57), (67)  and (68)  with X’ = 1, when the model solution 
U$ is restricted to u:, and to 0 < 1 according to (51)  and (53); then it may be 
shown t>hat uTo, v:,, wTo a n d z  are zero and that xlo is zero. Under assumption 
(i) we expect the Mangler & Weber solution to be appropriate for the delta-wing 
leading-edge problem to leading order. Again, higher-order corrections to 
Mangler & Weber’s solution of two kinds should be found. The first is a correction 
with respect to slenderness and should use solutions to (55)  and then compute 
a slenderness correction xol to xoo; this would bring in ellipticity for the vortex 
sheet. The second is a correction with respect to closeness and leads to 

--- 

u = -Co0A+. . .  +{ C,02(A-Q)A++ ...}Y,(x) 
+ { Z o  + . . . - Co o3(5A2 - 311 + 4) Y,(x)} + . . ., ( 6 9 ~ )  

w = COM+ ...+{- CoO(A-Q)+ ...}Y,(x) +{a+ ... + C , 0 2 A ~ ( 2 A - 2 ) Y 2 ( ~ ) } +  ..., (69b)  

(69G) 

( 6 9 4  

w = C o ( A - i ) +  ... +{CoOA&+ ...} Yl(x) 

+ {zo + . . . - C, 02(R - Q) y2(x)} + . . ., 
p = - @:A2 + ... +{z - 2Cg @(A2- 1) Y2(x) + ... . 

Using the trick which allows u$,, w$, and tot, to be found, we get through 
straightforward but tedious calculations 

- 
U& = - QC, IF{( 8 ~ 2  - 2 )  A - + + 9n2 - 1 2 7 9 4 ~  - 12n2y} ; 

V& = - QC, 02{5.rr2A2 - 4n2A + ~TPA,u + 3n2y + Q - 5,’) A-9 ; 

(700)  

(70b)  

(70c)  

- 

- 
w;, = &C,, #2{($n2 - 1) A - 2n2Ap +3(2n2- 1)); 

- 
p& = -- &Co 02{4n2A2 - 6n2A2p - ~IT’A,u + (479 - Q) A - 3n2y +tn2  + #}y  ( 7 0 4  
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where 

We may now, assuming slenderness, compute a closeness correction to the 
shape of the sheet as follows: as the sheet is given by x = ( 2 k  + 1) n, we have, 
with X‘ = 1, 

E ( e )  = ey-oo(e) + E ~ , I O )  + ...I, 

Z20(8) = -+/32{+$n2A2-7~2~-$(++ 1) A-&+$n2}A-*, 

(72) 

Eoo(8) = -A*, (73a) 

(73b) 

which would allow computation of x20, the leading approximation to x2 with 
respect to slenderness. 

5. Application to Kaden’s problem 
5.1. Summary of Noore’s results 

As a second application of the present theory we consider Kaden‘s problem, 
which was worked out by Moore (1975), and show that complete agreement is 
obtained with his results. At times t < 0 we consider two-dimensional, incom- 
pressible, steady, irrotational flow around an edge, with complex velocity 
potential 

From t = 0 on, we remove the edge. It is found that a vortex sheet begins to 
roll up. From dimensional considerations, the focus of the spiral is expected 
to be at x = a(yt)%, y = b(yt)), where a and b are numerical constants, and 
accordingly we set 

Again from dimensional considerations, as shown by Kaden (1931), the shape 
of the sheet is expected to be given by 

$+i$ = - y(x+iy)% (74) 

2 = a(yt)f + r cos 8, y = b(yt)j + r sin 8. (75) 

where 

(76) 

(77) 

The focus of the spiral is at 6 = 0, which corresponds either to r + 0, t fixed or 
to t + 00, r fixed. From Moore’s solution 

p = (277ra3)-1, (78) 

where a, as well as e, is a numerical constant. The function 9 may be expanded 
when -+ 0, and Moore derived the leading term of this expansion: 

9 = g ~ ( 2 ~ ~ t ) q m  cos [2(0 - 8,) + $1 + . . . , (79a)  
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C = / A ]  + IBI, A = ]Alei$, B = IBle-@, (79 b-d) 

Three further terms will be derived below. By a dimensional argument the 
strength of the sheet is expected to be given by 

(80) 

h = 1,  (81) 

G = - + C ( ~ ~ C X ~ ) ~ [ ~ C ~ S [ ~ ( ~ - O , ) + $ ] + . . .  . (82) 

I’ E [#I = hya-&r*{l+ G(5, 6)), 

where h is some numerical constant. From Moore’s solution we find that 

and that the leading term in the expansion of G reads 

This result will be rederived below and we shall give three further terms in the 
expansion of G. We observe that there are three adjustable constants in Moore’s 
solution, namely a, E and C. These constants cannot be determined from local 
considerations only and they are related to the overall shape of the sheet. Two 
other arbitrary constants will be added by the three further terms computed 
below. 

5.2. The closeness expansion 

Setting the origin at  x = a(yt)%, y = b(yt)P and using the polar co-ordinates 
introduced in (75), we write 

for the velocity vector, e, and ee standing for unit vectors in the radial and 
azimuthal directions respectively. 

The zeroth-order approximation with respect to closeness is an unsteady, 
incompressible, two-dimensional, rotational flow, with time entering only 
through c, as defined in (77). For such a flow we set 

u = ue,+vee, (83) 

From Kaden’s solution and Moore’s improvement on it, we expect that @ and 
V go to zero with 6. The vorticity is easily computed to be w$ k, where k is a 
unit vector normal to the plane of flow and 

#o* = - $y(2n(ar)t}-lr-yl+ n(g, e)}, (85) 

with a =  (1 + sealat) v+ z a q a e .  (86) 

%+ staap~ - z a q a e  = 0, 

From the continuity and vorticity equations we get 

(87) 
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and from (86)-(88) we find 
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which will prove useful later on when we look for a slenderness expansion of @, 
'Y and R. Here we consider only the limitation imposed on the possible solutions 
by periodicity with respect to 0. We defhef to be the average of the periodic 
function f according to 

Averaging (87) and taking into account the fact that @ is bounded (indeed 
vanishing) when ( goes to zero, we find 

- 
@ = 0; (91) 

then on averaging (86) amd (88) we get 
- 
Q = (1 + 3ca/a()E (92) 

When dealing later with the slenderness expansion of the solution of (86)-(88), 
we shall find (91)-(93) very useful in that they will allow determination of some 
constants which otherwise could be determined only by continuing rather far 
with the expansion process. 

From now on, we assume that we know a solution of (86)-(88) such that 
@, Vand !2 go to zero when(-+O and such that (91)-(93) hold. We look now for 
the first correction to that solution with respect to closeness. The first step is to 
find a xo such that (21) holds and such that the equation of the sheet is xo = n 
to leading order with respect to closeness. Guided by Moore's solution, we set 

xo = e-e++c-y1+g((,e)}, 
and find that (21) leads to 

(94) 

(96) 

Now, assuming that we know a solution of (95) such that (96) holds, we find 
first that 

Ivxo12 = : ( e r ) - y p ( i  + ~ - ( a ~ / a 5 ) 2 + ~ ( p d ~ / ~ e + c ) 2 } ,  (97) 

then, from (18), (24), (84), (94) and (97), find that the first two terms of the 
closeness expansion read 
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where 

From the obvious relation 
1[V1*11/1V0*1 = o(a 

we see that the closeness parameter is equal to 6. Thus we cannot expect (98) to 
be useful unless t is small but then it will be sufficient to have approximations 
of @, “Y, !2 and F f o r  small c. Let us observe that, according to (28) and (29), 

@ and may be considered as part of the slenderness expansion of u; and z$. 
We shall accordingly set 

- 

- -  
q* = v; = 0. (101) 

In order to construct the first approximation in closeness we need now to find 
the strength r0 of the sheet, according to (4O)iGuided by Moore’s result (80) 
we set 

and get for G the equation 
ro = hy(a/r)-t { 1 + G(t ,  e,>, (102) 

Averaging this equation, we find 

Now, provided that we know a solution of (103) such that (104) holds, we 
have constructed the first two terms of the closeness expansion and we stop 
the process here. 

5.3. The slenderness expansion 
We come now to the process of constructing an approximate solution of (86)-(88) 
when 5 is small. We try 

I K 

k=l 
% = x tfis”lc@k(@ + o  ( t n K ) ,  

(105) 
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k 1 2 3 4 5 6 7 8 9 10 11 
n, V2 v3 2v2 V 2 4 - l  V4 V , + V , V 3 + 1  3 V 2  2 l J , + 1 l ' , + 2  Vg 

0.8685 1.5815 1.7350 1.8685 2.2i01 2-4500 2.5815 2.6055 2.7370 2.8685 2.9496 

TABLE 1 

The first step is to find the sequence {nk}. Substitution of (105)  into (86)-(88) 
leads to a system of recurrence relations. At each step k one has to solve a linear 
system for %k, V k  and Rk with a forcing term involving %J7 VJ and R with 
J < k. Then it is easily found by eliminating Vk and f i k  that 

[ ( I  + 3 n k ) 2 + 3 ] a k + 4 d 2 a ! , / d e 2  = (R.H.S.),, (106)  

where (R.H.S.), involves aJ, 'fJ and R and their derivatives for J < k only, 
a point which may be seen from (89). Looking for a solution of the homogeneous 
version of (106) of the form ak = aksin [q(6'+#k)] we find that the sequence of 
nk includes all vq such that? 

vq = 9{(442-3)4- I}, q 2 2 ,  qinteger. (107) 

Furthermore the very process of building the solution shows that the sequence 
{nX> must be stable to the addition of unity to any member of the sequence as 
well as to the addition of any two members of the sequence. This will work as 
long as neither of these processes leads to some vO. When this occurs it will be 
found necessary to introduce into the expansion (105) logarithmic terms such 
as tnk(logt)p, where p < B(lc), p being an integer. We have not found to what 
order this will occur if a t  all, but table 1 shows that this occurrence is not ex- 
pected in any practical application of the expansion. 

Using (86)-(88) and (91)-(93),  we compute the fmt four termsofeachexpansion: 

a, = a, cos 2$,, a2 = az cos 3$2, 

where a, = - 2C(2?Ta*)n1; 

V, = I( 1 + 3n,) a, sin 2$,, V2 = Q( 1 + 3n2) a2 sin 3$2, 
1 l + 6 n 1  - nag n, + 2 

64  n,+l  4 -  2 6n1+5 V3 = -- a,cos4$,+V3, V - -- - a, cos 2$1, 

t For q = 1 we find nR = 0 and this corresponds nearly to a shift in the location of the 
focus of the spiral as indicated by Moore (1975, $ 5  after formuIa (5.1)).  We eliminate this 
term. 
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with $, = 8 + q5, and $2 = 8 + q5,, where a, and a2 are arbitrary constants and 
q5, and fi2 are arbitrary phase shifts; furthermore we have set 

- 3 -  3 45nl+f6 
v 3 = - - a : ,  Q --- a:. 

64 3 -  64 n ,+8  

From (95) we find that the expansion of 9 reads 

K J* 

k - 1  J =  1 
9 = t n k 9 k +  C J $ j + . . . ,  

where the J are integers. Reordering we get 

9 = pa 9, +iyl +& s2 +p F3 +@+I F4 + . g 2 g 2  + . . . . (113) 

Referring to the general theory we see that the termst$] andt2$,may be counted 
in either of the two kinds of expansion. We observe that in principle it is not 
legitimate to include the term [zg2 as long as the closeness expansion has been 
stopped just before terms O(c2). From (95) and (96) we find 

1 A o-- , - -&,sin z$,, g1 = 0, S2 = - &,,sin 3$,, 

3 4n1+5 
64 n ,+l  4 6n1+5 

rat 2712, + 20 
9, = --- a’cos4$,+S3, S4 = - a, cos 2$17 

where we have set 
1 114n1+439 

a’. S 8 = 6 4  11-412, 

A word of explanation may be useful about the result .@, = 0. This is readily 
obtained from (96): dividing by5 and lettingg go to zero in the resulting equation 
gives 

1 - 27ra*p = 0, 

then from (95) and (96) we obtain a$,/aO = 0 and = 0. 
In  much the same way, from (103) and (104) we find the expansion of G to be 

G = &G, + P G 2  +[%aG, +&+lG4 +t2GZ + . . ., (117) 

with G, = 6 a, sin 2$,, G,  = 6 a, sin 3$,, 

and 
1 2781n, + 3328 

- 64 141n,+440 a’* 
-- 

5.4. Comparison with Moore’s results : comments 

From the values 9, in (1 14) and Gl in (1  18), by referring to 8 5.1 we see that there 
is complete agreement with Moore’s results. These have been improved in two 
ways: first, we have added three more terms to Moore’s expansions; second, we 
have given a consistent approximation for the flow variables all the way from 
one side of the sheet to the other. We think that with a moment’s reflexion the 
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reader will be convinced that our process is fairly simple. In  fact the rolling-up 
process affects the closeness expansion only and, when limited to its first two 
terms, may be fairly simply obtained from the rotational solution. From the 
knowledge of a, -Y and a, this calculation has nothing to do with the rolling-up 
process itself, and we find that all the computations are contained between (94) 
and the end of § 5.2. Of course, it  is through the process of computing @, Y- and 

by the slenderness expansion that the computations become tedious. By the 
end we observe that Moore states that the error term in his expansions of 9 is 
O(E); we have computed this and found it to be zero. 

6. Discussion 
We must recognize that the analysis of $ 3  is a formal one, but we cannot 

expect to be able to render it more rigorous and we are led to make a conjecture 
which is strongly suggested. Suppose that we know a solution of (20) and (21) 
such that (27) holds, then, as we have shown, there exists a Po such that (40) 
holds too. Our conjecture is that, if xo = (2k+  1)  7~ has the structure of a rolled-up 
sheet with xo = 7~ very close to each other, then our solution (%*, p$)  will be an 
approximate simulation of the core of a rolled-up vortex sheet. The leading-order 
vorticity of this sheet will be -2nlV~~I-10$ and appears in (24) and (25), 
which exhibit the cancellation of the distributed vorticity in the leading approxi- 
mation by the vorticity of the next approximation, in such a way that the A ow 
given by the first two approximations (considered together) is irrotational with, 
now, the vorticity fully concentrated on the sheet. A second approximation is 
contained in (32) and (33) and it appears that the vorticity associated with its 
derivatives with respect to x cancels the vorticity associated with derivatives 
with respect to x coming from the first approximation, in such a way that, again, 
the first three approximations (considered together) are irrotational with 
vorticity concentrated on the sheet. The coefficients of Yl(x) in (24) and (33) 
are related to the vorticity concentrated on the sheet according to leading and 
first approximation respectively. There is no concentrated vorticity corre- 
sponding to the coefficient of Y2(x) in (33) and the occurrence of this term comes 
from the need to cancel the distributed vorticity associated with the variation 
with x of the distxibuted vorticity arising from the coefficient of Yl(x) in (24). 

Assume that lu$ I is of order one and that %*/at and IOU," I are of order s-l, 
where s is a slenderness parameter. Furthermore, assume that axo/at and lVxol 
are of order c-ls-l. Then from inspection of (24) we see that i.3: is of order c 
while from inspection of (33) we see that i.32 is the sum of two kinds of terms. 
The first ones are of order El l V ~ ~ l - 1 ,  that is s - I R ( c ,  while the others are of 
order c2. Setting u:, pT and x1 all equal to zero we find that the successive terms 
in the expansions (18) are of orders co, c1, c2, . . ., so that these expansions may be 
called closeness expansions. From (98) we see that the closeness parameter is a 
measure of the ratio of the discontinuity in velocity across the sheet to the mean 
of the velocities on either side of the sheet. Now we discuss the values of F, 
3 and xl. From (28)-(31), they satisfy homogeneous equations, and setting 
uT = 0,  p: = 0 and x1 = 0 gives a particular solution. Whether this is the correct 

-- 

- - 
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one is not a question relevant to the closeness expansion alone. As a matter of 
fact the smallness of c is tied to u$ and xo and is indeed a property of the rotational 
solution u;, at least if we deal with one tightly wound sheet (refer to the dis- 
cussion after (68) for another interpretation). In  the two applications that have 
been worked out, the smallness of c is related to the smallness of the slenderness 
parameter s and it is useful to expand ug , p$ and xo with respect to slenderness 
if one wants to obtain an explicit solution for the basic flow. Then uT, pf and 
x1 are best considered as part of the slenderness expansion of u$, p$ and xo, 
thus i t  is legitimate to set them equal to zero. We have not worked out the 
equations for u:, pg and xz but it is easily shown that they have to satisfy 
inhomogeneous equations and will be non-zero [that this is actually so may be 
checked from (70)]. It may be further checked that they are of order c2 with 
respect to u$, pg and xo, at least for the particular solution which is forced by the 
inhomogeneous terms, the complementary solution pertaining to the slenderness 
expansion. 

Now let us comment on the determinacy or indeterminacy of the solution. 
In  an earlier version of the paper we worked out only the application to the 
Mangler & Weber problem and one referee was led to suspect the validity of our 
procedure for the reason that there is no adjustable constant in (69). As a matter 
of fact this has to do with closeness and slenderness. Through inspection of 
(24) and (33) for example, we see that the closeness expansion up to the order 
which has been considered is fully determinate when u$, p$ and xo are known. 
This amounts to saying that the irrotational solution with a rolled-up sheet is 
fully determined by the associated rotational solution with no sheet. This 
statement looks reasonable. If adjustable constants are necessary, for example 
in order to account for the observed ellipticity of the sheet, these must not be 
looked for in a modification of the theory which relates one solution to the other, 
and which is the essence of the closeness expansion; rather the adjustable 
constants have to be sought in a modification of the basic rotational solution 
(u$, p;, xo) .  Unfortunately, with the leading-edge core it is very difficult to 
obtain such a modification as we have shown by the end of $4.1, but with the 
Kaden’s problem we have been able to achieve this goal and our solution contains 
probably more adjustable constants than it would prove practical to use in any 
check with numerical computations. 

The most fruitful continuation of the present work would be to use it in order 
to devise an efficient numerical process for computation of complex flow con- 
figurations involving rolled-up vortex sheets as in Rehbach (1975). Another 
extension would be to investigate the use, as the basic rotational flow, of a solution 
involving slender vortex filaments according to the work of Ting (1971), Widnall, 
Bliss & Zalay (1971) andMoore & Saffman (1972). 

-- 

- -  

This research was completed partly under the sponsorship of the Direction 
de I’Aerodynamique at ONERA and is published with the kind permission of 
the Director of ONERA. The authors are indebted to referees for remarks about 
uniqueness and lack of ellipticity which led them to introduce a distinction 
between the slenderness and closeness approximations. 
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Note added in proof. The two points raised respectively a t  the very end of 
$54 and 6 have been examined and are discussed in a paper to appear in 
the proceedings of the Journees Mathematiques sur les perturbations singulieres 
e t  a1 theorie de la couche limit6, Lyon 8-10 Decembre 1976, to be published 
in Lecture Notes in Mathematics, Springer Verlag. It is shown first that (44) 
holds automatically and second that a vortex sheet may roll around any slender 
vortex filament. If e is the slenderness of the filament (diameter of its cross 
section over radius of the filament) the closeness is C = 19 and it is found that 
there is a small ellipticity of O(s). 


